First we set up the Vernier software and connected all the sensors with the LabQuest Mini. Then we placed the three test tubes on the rack and labeled them A, N, and B. Then we measured out 3mL of hydrogen peroxide and poured it into each tube. Then we made our yeast solution by filling up one of the beakers with 50mL of water and 1 teaspoon of yeast and stirring. We used the eye dropper to add 2 drops of the yeast solution to Test Tube A. Then we added 3mL of the soda and put the rubber stopper on top. We then collected the data and recorded the highest pressure of Test Tube A. We waited after the 2 minute mark until the pressure started going down so that we could get a more accurate pressure amount. We repeated these steps for the next two tests, but we used milk and antacids for the mixtures.
My hypothesis was: If yeast breaks down and releases the gas of compounds, then the acidic mixture will have the highest pressure because the other two mixtures will have lower kPa.
The reason I thought that the neutral and basic would have low pressure was because the neutral mixture (milk) would be cold which (as concluded from a previous lab) causes a lower pressure and the antacids neutralize acidity, so I did not think that they would cause a high pressure.
My hypothesis was close, but was not exactly supported by the data. The chart below shows the results of the tests:

Basically, the Basic mixture ended up having the highest pressure at 128.3 kPa. The Acidic mixture was close with 122.13 kPa. Last was the Neutral mixture with 117.19 kPa.





The proved our hypothesis to be true because the Hot test ended up having the shortest dissolve time (23 seconds). Room Temperature was only 16 seconds behind, and Cold was 97 seconds behind. Basically, hotter temperatures will tend to quicken the rates of chemical reactions (especially when concerning the dissolving of something).
This was my diagram for the Room Temperature test. Bubbles were flying from the alka-seltzer tablet (as shown in diagram). In fact, the bubbles were coming so rapidly that the tablet was spinning round and round until it settled back at the top to dissovle into foam.
Then there was the Hot test, immediately after the tablet was dropped into the heated water it started to fizz. All around the tablet was bubbly foam, unlike the Room Temp. test, bubbles did not start spurting out until a little later. It mainly just fizzed.
Last was the Cold test. There were bubbles during the Cold test, but they were rather large and came very slowly. After about a minut the tablet started to really fizz and then it started looking like the Room Temperature beaker.



After we froze the ball it became almost completely white and opaque.